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Abstract

The extension of the single-name CDS option to the index case requires
a careful analysis of the index "spread" �inlcuding the joint distribution
of the index spread and the index loss. We �rst introduce an index spread
that is closer to the single-name case, called CDS-like spread. We then
compare it to the spread quoted in the market, in terms of forward, change
of probability measure, treatment of convexity, etc. These frameworks
are not su¢ cient to deal with the index loss in the option payo¤. To cope
with this, we use the ad hoc spread adjustment designed for the option
by Pedersen [3] ; alternatively, we suggest to work conditionally on the
spread to capture the loss distribution. Our methodologies can be used
with any dynamics for the index spreads introduced, but the variety of
these dynamics is not explored here �we essentially stick to the lognormal
distribution as an example.
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1 Introduction

Increased liquidity for credit indices has enabled the development of index-
based derivatives. Currently, the index option is the most, if not sole, liquid
example. Its payo¤ is naturally expressed in terms of the index spread quoted
on the market. But this index spread di¤ers from a single-name CDS spread:
the spread actually paid on an index contract is not the quoted spread, but
a �xed contractual spread, along with an upfront payment that re�ects the
o¤-marketness of the trade. Therefore the quoted spread appears only as an
intermediary tool to compute the upfront amount, and the toolbox for CDS
spread modelling cannot be readily applied to the quoted index spread.
Therefore we start by introducing a new index spread, called CDS-like

spread, which is a simple extension of the single-name case. A conversion formula
allows an easy switch between the quoted and CDS-like spreads, and intuition is
provided via numerical examples. In this new framework, we can extend to the
index case the survival measure de�ned by Schönbucher for single-name options;
cf. [6], [7] and [8] . Here the "numeraire" is the CDS-like index duration, which
collapses to zero in case of an Armageddon event - a default of all names in the
index basket, introduced by Brigo & Morini [1]. Still we can de�ne a probability
measure associated to this numeraire, which helps pricing payo¤s involving the
duration ; for other payo¤s, we have to deal with convexity.
Then we jump to a direct modelling of the quoted index spread. Unfortu-

nately the de�nition of the forward spread and duration proves di¢ cult, both
conceptually and in terms of practical implementation. We partly address this
complexity with a couple of e¢ cient approximations. From there we can follow
the same route as in the CDS-like case : change of probability measure, and
convexity treatment.
Having laid the foundations for index spread derivatives, we focus on the

index option, and start by highlighting the hidden complexity of its payo¤. In
particular this payo¤ includes the cumulated loss upon exercise, which requires
some joint modelling of the index spread and index loss. It is tempting to replace
the random loss with its unconditional expectation, but this approximation
proves very coarse in the case of stressed markets. A better alternative to the
joint modelling is our loss-adjusted spread, that somehow incorporates the loss
within the spread: this idea was initially suggested by Pedersen [3], and inspired
further research [5], but our implementation is actually di¤erent. In [4], Jackson
prices the option conditionally on the loss, but this approach requires to input
a spread volatility for each loss level, as well as a loss distribution for the index
, e.g. as implied by the market on index tranches: these dependencies are not
desired. Instead we propose to build the loss distribution conditionally on the
spread, using assumptions that are common when pricing CDO tranches. We
are then left with a numerical integration over the spread distribution chosen.
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2 Credit Index contract

2.1 De�nition and notations

We remind that a credit index is simply a basket of p single-name CDS contracts,
with a common trade date T0 called the roll date, common quarterly payment
dates T1; : : : ; Tn up to the maturity Tn; and a common contractual spread ScTn :

Example 1 The Series 8 of the iTraxx Crossover has a basket of p = 50 names;
it was rolled on T0 = 20 Sep 2007; and is available with the standard 3Y, 5Y,
7Y and 10Y maturities1 , each with its own contractual spread. For example, the
5Y pays a contractual spread Sc5Y = 375 bps.

The (cumulated) index loss at time t is de�ned by:

Lt =

pX
j=1

N j
�
1�Rj

�
1f�j�tg

while the outstanding notional is simply

Nt =

pX
j=1

N j :1f�j>tg

Here, for CDS number j;

� � j is the default time

� N j is the notional (usually homogeneous - at least upon roll)

� Rj is the recovery rate

For the sake of simplicity, we will always assume deterministic interest rates,
and an initial basket notional of 1:

Pp
j=1N

j = 1:

2.2 Upfront amount Vs. Quoted spread

So as to enter an index contract at a given date t; an upfront payment Ut;Tn is
made to re�ect the o¤-marketness of an index contract struck at ScTn : In practice,
this upfront is communicated through a quoted spread2 written Sqt;Tn : Before we
detail the relationship between this spread and the upfront, we need to introduce
the Flat Risky Basis Point value, also known as Risky DVO1 (Discounted Value
Of 1 basis point) or Risky Duration. We assume that Ti � t < Ti+1:

1For a roll date of 20 September 2007, these maturities are respectively: 20 December 2010,
2012, 2014 and 2017.

2This is not a "market spread" so to speak, as there is no index contract on the market
paying the quoted spread. It is sometimes called "reference spread".
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De�nition 2 The Flat RBP, written Ft;Tn (S), is de�ned as the value at time
t of a risky basis point paid between t and Tn; with the risk of a (virtual) �at
spread curve with spread S and recovery 40%: Our convention is that the �rst
payment will accrue from t to Ti+1:

With a "relatively" �at interest rate curve, it is well-known that the default
intensity curve resulting from a �at spread curve is almost3 �at at S

1�R : When
t = Ti; this leads to a simple approximation:

Ft;Tn (S) '
nX

k=i+1

(Tk � Tk�1)ZCt;Tke�
S

1�R (Tk�t) (1)

where ZCt;T is the risk-free zero-coupon at t for maturity T:
With these notations, the market convention is as follows: the protection

buyer pays an upfront amount equal to:

Ut;Tn ,
�
Sqt;Tn � S

c
Tn

�
Ft;Tn

�
Sqt;Tn

�
Nt = ut;Tn

�
Sqt;Tn

�
Nt (2)

where the auxiliary function uT;Tn is de�ned by:

ut;Tn (s) ,
�
s� ScTn

�
Ft;Tn (s) : (3)

At �rst glance, the use of the �at RBP may look arti�cial, but it actually
mitigates operational risk:

� less data transfer: only one spread number is required to compute the
upfront amount, while a usual RBP would require a full spread curve

� lower dependency on the CDS pricer of the counterparties: most pricing
tools will coincide on the RBP value of a �at spread curve, so that the
parties are likely to agree on the upfront amount

Note that the MtM (mark-to-market) at t of an existing index contract is
precisely this amount Ut;Tn :

Remark 3 For ease of notation, formula (2) omits the accrual of the contrac-
tual spread between Ti and t: This accrual actually reduces the upfront by an
amount ScTn : (t� Ti)NTi;t where NTi;t is some "averaged" index notional on
the accrual period [Ti; t] : Note that this negligence is innocuous in the context
of credit index options, given that the accrual term is netted in the �nal payo¤.

3This is actually exact if the spread is paid continuously, even with a steep interest rate
curve.
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2.3 A new tool: the CDS-like spread

As the index is simply a basket of single-name CDS contracts, we can write its
RBP as a weighted sum:

RBPt;Tn =

pX
j=1

N j1f�j>tgRBP
j
t;Tn

(4)

The same applies for Pt;Tn ; the present value of the index protection leg, also
known as default leg or contingent leg. Given that the protection leg P jt;Tn for
name j is equal to the spread leg, we can write

P jt;Tn = 1f�j>tgS
j
t;Tn

RBP jt;Tn ;

where Sjt;Tn is the market spread at time t for maturity Tn; and RBP
j
t;Tn

is the
value at time t of 1 risky bp paid between t and Tn: Finally:

Pt;Tn =

pX
j=1

N j1f�j>tgS
j
t;Tn

RBP jt;Tn (5)

We can now introduce a CDS-like spread St;Tn for the index by setting:

St;TnRBPt;Tn , Pt;Tn (6)

Remark 4 Computing the CDS-like spread from (6) would require a prelimi-
nary work on the single-name spreads (rescaling to eliminate the index/single-
name basis). But in practice, we will never use these single-name spreads them-
selves: whenever required, the CDS-like index spread will always be bootstrapped
from the quoted index spreads: Appendix A details the conversion of quoted
spread information into CDS-like information

Inserting (4) and (5) in de�nition (6) shows the CDS-like index spread as a
weighted average of the CDS spreads:

St;Tn =
1Pp

j=1 !
j

pX
j=1

!jSjt;Tn

where the weights are:
!j = N j1f�j>tgRBP

j
t;Tn

Now we can rewrite the upfront Ut;Tn in terms of the CDS-like spread and the
index RBP4 :

Ut;Tn =
�
St;Tn � ScTn

�
RBPt;Tn (7)

4Note that the RBP term requires the term-structure
�
St;Ti

�
i�n of the CDS-like spreads

up to Tn, as opposed to the �at RBP which requires only the quoted spread for maturity Tn
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2.4 Conversion formula

Equating (2) and (7), we link the two types of index spreads introduced:�
Sqt;Tn � S

c
Tn

�
Ft;Tn

�
Sqt;Tn

�
Nt =

�
St;Tn � ScTn

�
RBPt;Tn (8)

Note that the index notional Nt does not appear on the right-hand side, given
that the names that have defaulted before t are already excluded by the default
indicators in equations (4) and (5).
Which of these two spreads spread is more useful ?

� Through the �at RBP, the quoted spread Sqt;Tn actually provides inte-
grated information in the time dimension, which makes comparison at
di¤erent maturities more di¢ cult than using CDS-like spreads. We could
therefore be tempted to consider the quoted spread only as a tool to com-
pute the upfront; nevertheless it is so close to the CDS-like spread (see
appendix B) that it remains meaningful.

� We will see below that we can adapt the single-name toolbox for a use with
CDS-like index spreads. Nevertheless, the CDS-like spread is not quoted,
and no index derivative is likely to be naturally expressed in terms of this
spread. This translates into complex pricing issues, as detailed in §3.1.

3 A toolbox for index spread derivatives

In this paper we do not focus on index derivatives driven by correlation, such as
index tranches, but instead by volatility. More precisely, we deal with European-
type optional payo¤s where:

� the underlying is the quoted index spread5

� the payment nominal is the outstanding index notional. This condition
ensures a natural match between the derivative and its hedge with the
index, and simpli�es computations.

Formally, we consider the payo¤s at t of the form:

'
�
SqT;Tn

�
NT (9)

for some function ': When ' (s) = (s�K)+ ; we get a caplet on the index
spread6 . By the way we also introduce the so-called CDS-like payo¤s:

 (ST;Tn)RBPT;Tn (10)

5Although the payo¤ can sometimes be expressed in terms of CDS-like spread, as is the
case for the index option.

6Note that the standard credit index option does not �t within this family of payo¤s, it
will be addressed in §4.
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We can always price these derivatives via an expectation under Q :

�'t = ZCt;TE
Q
t

h
'
�
SqT;Tn

�
NT

i
(11)

� t = ZCt;TE
Q
t [ (ST;Tn)RBPT;Tn ]

but this general approach does not account for the speci�cities of these payo¤s.
In the following, we �rst introduce models on the CDS-like spread, by analogy
with the single-name case. These models are appealing due to their conceptual
simplicity, but the CDS-like spread is not the natural underlying. Then we model
directly the quoted spread, but struggle to de�ne the forward versions of the
spread and RBP.

3.1 Models on the CDS-like spread

We �rst extend to the forward case the de�nitions of the CDS-like spread and
the RBP. We consider a forward maturity T; and we de�ne the forward index
RBP and the forward CDS-like index spread as the value at t of their payout
at T :

RBPt;T;Tn , ZCt;TE
Q
t [RBPT;Tn ] (12)

St;T;TnRBPt;T;Tn , ZCt;TE
Q
t [ST;TnRBPT;Tn ]

As in the single-name case, these can be computed using no-arbitrage conditions:

RBPt;T;Tn = RBPt;Tn �RBPt;T (13)

St;T;TnRBPt;T;Tn = St;TnRBPt;Tn � St;TRBPt;T

The process RBPt;T;Tn appears as the natural numeraire for CDS-like payo¤s
(10), but it becomes becomes zero when all names default - this is the Armaged-
don event fNT = 0g introduced in [1]. Without loss of generality, we can focus
on payo¤s that are 0 upon Armageddon event7 , and for these we introduce the
probability eQ de�ned by:

deQ
dQ

�����
t

, RBPT;Tn
RBPt;T;Tn

ZCt;T

We call it the RBP probability, and de�nition (12) shows that it makes the
forward CDS-like spread a martingale:

E
eQ
t [ST;Tn ] = St;T;Tn

7Otherwise split the payo¤ � as a sum �:1NT>0 + �:1NT=0; and price the second term
independently, e.g. under the risk-neutral probability measure. So as to control the magni-
tude of this second term, and potentially neglect it, we need to estimate the Armageddon
probability. Of course this probability will depend on the model chosen; we use a Gaussian
copula with stochastic recovery (see [10]), and calibrate the correlation on the super senior
tranche in the stressed markets of September 2008 . We then compute the probability for a
1-year maturity. For spreads around 500 bps, we get an Armageddon probability in the region
of 0:1%; which should not a¤ect the �nal price �unless � is very large on this rare event.
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As expected eQ is suited to CDS-like payo¤s (10): they become 0 upon Aamged-
don event, and their t�price is given by a simple expectation:

� t = RBPt;T;TnE
eQ
t [ (ST;Tn)] (14)

Assuming a log-normal di¤usion for St;T;Tn under eQ will lead to a Black formula
when  is a call function. For arbitrary functions  or more complex spread
distributions, semi-closed formulae can be obtained via numerical integration.
Unfortunately the pricing of generic payo¤s as in (9) exhibits convexity, cf.

appendix C. When it comes to handling convexity, the models on the quoted
spread that we introduce below will prove more natural.

3.2 Models on the quoted spread

3.2.1 Concepts and probabilistic tools

Index derivatives are naturally expressed in terms of the quoted spread, because
it is readily available in the market. However, their pricing will involve the
distribution of the quoted spread SqT;Tn at T and therefore will require a di¤usion
for some forward quoted spread Sqt;T;Tn ; which we now de�ne with an eye on
the de�nitions (12) of the CDS-like case:

� the forward �at RBP Ft;T;Tn is de�ned as the present value of the future
�at RBP, with a notional term accounting for the losses occurred up to
T :

Ft;T;Tn :Nt , ZCt;TE
Q
t

h
FT;Tn

�
SqT;Tn

�
:NT

i
(15)

� the forward upfront Ut;T;Tn is the discounted forward value of the upfront:
Ut;T;Tn , ZCt;TE

Q
t [UT;Tn ] : We rewrite this explicitly to introduce the

unknown forward quoted spread Sqt;T;Tn :�
Sqt;T;Tn � S

c
Tn

�
Ft;T;Tn :Nt , ZCt;TE

Q
t

h�
SqT;Tn � S

c
Tn

�
FT;Tn

�
SqT;Tn

�
:NT

i
(16)

De�nition (15) makes Ft;T;TnNt

ZCt;T
a Q�martingale. As in §3.1, we can focus

on payo¤s that are 0 upon Armageddon event, and de�ne a new probability
measure by:

deQq

dQ

�����
t

,
FT;Tn

�
SqT;Tn

�
NT

Ft;T;TnNt
ZCt;T

Rewriting (16) under this new probability immediately shows that the forward
Sqt;T;Tn becomes a martingale. Is this new probability useful ? For CDS-like pay-
o¤s (10), a change of probability had proved appropriate, leading to the simple
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pricing formula (14); but here, an expectation of (9) under eQq will introduce
convexity, because the payo¤ considered does not contain the numeraire:

�'t = Ft;T;TnNtE
eQq

t

24 '
�
SqT;Tn

�
FT;Tn

�
SqT;Tn

�
35 (17)

At this stage we are left with an integration against the eQq�distribution of
the quoted spread upon exercise - typically this law will derive from the model
chosen for the martingale Sqt;T;Tn :

3.2.2 Joint computation of the forward RBP & spread

Unlike the CDS-like case, we can no longer interpret the forward RBP de�ned by
(15) as a di¤erence of two spot RBPs that could be read on the market. Instead,
we take ' � 1 in equations (11) and (17). We then equate these "prices" and
get:

Ft;T;Tn = ZCt;T
EQt [NT ]

NtE
eQq

t

h
1=FT;Tn

�
SqT;Tn

�i (18)

Now we rewrite the right-hand side of (16) by applying successively equations
(7), (12) and (13), and get an equation where Sqt;T;Tn is the only unknown, once
we have computed Ft;T;Tn :�
Sqt;T;Tn � S

c
Tn

�
Ft;T;Tn :Nt =

�
Sqt;Tn � S

c
Tn

�
Ft;Tn

�
Sqt;Tn

�
Nt�

�
St;T � ScTn

�
RBPt;T

(19)
In practice:

� The terms EQt [NT ] and RBPt;T require the bootstrapping of the notional
decay rate �t introduced in Appendix A, but only up to time T

� The denominator is obtained by numerical integration over the eQq�distribution
of SqT;Tn : Assume we pick a log-normal distribution, then it will be cen-
tered on the forward spread, which is unknown. Therefore the formula (18)
must be plugged in (19), which now contains only the forward - explicitly,
but also implicitly via the distribution of SqT;Tn :

Appendix D suggests two approximated frameworks that simplify the com-
putations given in this section. It also contains a summary designed to facilitate
the practical implementation of the exact and approximated frameworks.

4 Standard Index Options: how mischievous ?

4.1 Product description

In a payer option (call on protection, i.e. put on risk), the option holder has the
right to buy protection on the index at a spread K called the strike, at some
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exercise date T: In practice, the exercise takes place at one of the index dates8

Ti:
More precisely, in the case of a payer option, the trade con�rmation states

that, upon exercise at T; the option holder will:

� sell risk on a physical contract on the index, thus paying a spread ScTn to
get the losses. By de�nition, the MtM of this contract is the upfront at
t = T as de�ned in equation (2).

� pay/receive an upfront payment

u� ,
�
K � ScTn

�
FT;Tn (K) ;

plus some accrual term that (imperfectly) nets with the index accrual of
the physical index trade.

� receive the index losses LT that occurred between the roll date T0 and
the exercise date T: Therefore an index option di¤ers from a CDS option,
as the latter knocks out if the underlying credit defaults: a CDS option
provides protection against spread risk, but not default risk.

Finally, the payo¤ at exercise date T for a payer option is9 :

�PT =
h�
SqT;Tn � S

c
Tn

�
FT;Tn

�
SqT;Tn

�
NT � u� + LT

i+
(20)

Upon Armageddon event, the payo¤degenerates into the constant C , [Lmax � u�]+ ;
where Lmax ,

P
N j
�
1�Rj

�
is the maximum index loss. As suggested in §3.1,

we split the payo¤ by writing:

�PT = �PT :1NT>0 + C:1NT=0

The second term is simply a multiple of the Armageddon probability; in the
following we will actually neglect this term, and apply equation (17) to get the
option premium at t :

�t

�
�PT

�
= Ft;T;Tn :Nt:E

eQq

t

240@SqT;Tn � ScTn + LT � u�

FT;Tn

�
SqT;Tn

�
NT

1A+35 (21)

The conversion formula (8) allows to rewrite the payo¤ (20) in terms of
CDS-like spreads. Therefore models on the CDS-like spread are just as relevant

8As of 2008; the liquid dates are T1; T2 and T3; i.e. 3, 6 and 9 months from the roll date
T0

9We have carefully examined the legal documentation for a credit index option, and we are
con�dent with the payo¤. Nevertheless, some argue that the upfront cash�ow u� is actually
paid on the risky notional NT rather than the initial notional, assumed to be 1. In this
case, the netting of the accruals is now perfect, and the results in the section remain valid
provided the loss-adjusted spread introduced in §4.2.1 needs to be amended into: S�T;Tn ,
ST;Tn +

LT
NT 
T;Tn

:
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for the credit index option, and all the results below will hold when using the
following conversion table (see Appendix C for the de�nitions related to the
CDS-like framework):

CDS-like QuotedeQ eQq

RBPT;Tn FT;Tn

�
SqT;Tn

�
:NT

RBPt;T;Tn Ft;T;Tn :Nt


T;Tn FT;Tn

�
SqT;Tn

�
ST;Tn SqT;Tn

In particular, the option premium given by (21) can be rewritten as:

�t

�
�PT

�
= RBPt;T;TnE

eQ
t

"�
ST;Tn � ScTn +

LT � u�

T;TnNT

�+#

4.2 Pricing: How to incorporate the loss term ?

The payo¤ of credit index options involves two correlated underlyings: the index
spread and the cumulated index loss. From a modelling point of view, their link
is far from trivial; in fact, the spread ST;Tn re�ects an expectation of future
losses at the horizon Tn; while the loss LT represents the realized losses at
option maturity T:
Replacing the loss term by its expectation is appealing (it easily leads to a

Black formula) but has many shortcomings that are not discussed here. This
section will focus on more sophisticated solutions: the �rst one introduces an
auxiliary spread related to the realised loss, while the second one computes the
loss conditionally on the spread.

4.2.1 Loss-Adjusted Spread

Several authors (see [5], [3], [1]) adjust the spread to get rid of the loss term in
the payo¤. Our loss-adjusted spread S�T;Tn is de�ned implicitly by:�

S�T;Tn � Sc
�
FT;Tn

�
S�T;Tn

�
,
�
SqT;Tn � S

c
Tn

�
FT;Tn

�
SqT;Tn

�
:NT + LT

By construction this spread "absorbs" the loss and the notional reduction (the
terms NT and LT are only on the right-hand side of the de�nition): upon
default, the loss is translated into an add-on on the adjusted spread10 . Clearly
it is the natural underlying for the index option, since the premium given by
(21) is now a simple formula, without loss term:

�t

�
�PT

�
= ZCt;TE

Q
t

h��
S�T;Tn � Sc

�
FT;Tn

�
S�T;Tn

�
� u�

�+i
(22)

10 In practice, after a default in the index, the market will quote the index spread with &
without the defaulted name, and the former spread corresponds to our loss-adjusted spread.
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At this stage, [3] postulates a constant spread drift under the risk-neutral
measure, and calibrates it to market data. Instead, we adapt the approach
introduced in §3.2 for models on the quoted spread, and de�ne:

� the adjusted forward �at RBP:

F �t;T;Tn , ZCt;TE
Q
t

�
FT;Tn

�
S�T;Tn

��
� the adjusted forward spread, via:�

S�t;T;Tn � S
c
Tn

�
F �t;T;Tn , ZCt;TE

Q
t

��
S�T;Tn � S

c
Tn

�
FT;Tn

�
S�T;Tn

��
We recommend to compute these exactly, as we did in the quoted case - given

the loss term can generate a substantial spread adjustment, the approximations
suggested in appendix D may be too inaccurate. More precisely, we associate a
probability eQ� to the numeraire F �t;T;Tn ; and we easily get:8><>:

�
S�t;T;Tn � S

c
Tn

�
F �t;T;Tn = Ut;Tn � Ut;T + ZCt;TE

Q
t [LT ]

F �t;T;Tn =
ZCt;T

E
eQ�

t

h
1=FT;Tn

�
S�T;Tn

�i (23)

As in the quoted spread case, we need CDS-like information to compute the
expected loss and the upfront Ut;T ; as for the upfront Ut;Tn , it can be computed
with either CDS-like or quoted spreads. Finally the index option price writes:

�t

�
�PT

�
= F �t;T;TnE

eQ�

t

240@S�T;Tn � Sc � u�

FT;Tn

�
S�T;Tn

�
1A+35 ;

and it only remains to perform a numerical integration over the chosen distrib-
ution for the adjusted spread.

4.2.2 Homogeneous Pool with Conditional Independence (HPCI)

In this approach we model the realized losses LT conditional on the spread.
This method relies on two main assumptions:

1. Homogeneous pool : The index constituents have the same default proba-
bility, weight and recovery. Let �t be the (common) intensity process and
�t;T =

R T
t
�udu. Conditionally on �t;T ; the (common) default probability

is:
q , eQq

t (� j > T j�t;T ) = e��t;T

2. Conditional independence: The default events are independent condition-
ally on �t;T

13



We actually condition (21) on �t;T (rather than the spread, but we show
below that this is equivalent) and we are left with computing the following
expectation:

� (�t;T ) , E
eQq

t

240@SqT;Tn � ScTn + LT � u�

FT;Tn

�
SqT;Tn

�
NT

1A+�������t;T
35 (24)

The homogeneity assumption yields the obvious relationship:

NT = 1�
LT
1�R;

where R is the common recovery value. Therefore, if we are able to convert this
conditioning on �t;T into a conditioning on S

q
T;Tn

; only LT will be random in
(24). For that purpose, we replace the integral by a basic trapeze approximation:

�t;T �
�t + �T
2

(T � t)

Now, for a short time horizon "; we also have the following approximations:

�t �
Sqt;t+"
1�R and �T �

SqT;T+"
1�R

The value of Sqt;t+" can be read by extrapolation of the index spread curve as
of t: So as to express the unknown SqT;T+" as a function of the known S

q
T;TN

we need a further assumption on the moves of the spread curve between time t
(today) and time T :

1. Homothecy:
SqT;Tn
SqT;T+"

=
Sqt;T;Tn
Sqt;T;T+"

2. Translation: SqT;Tn � S
q
T;T+" = Sqt;T;Tn � S

q
t;T;T+"

In both cases, we can write SqT;T+" = h
�
SqT;Tn

�
for some function h; and we

get the required link between �t;T and S
q
T;Tn

:

�t;T =
T � t

2 (1�R)

h
Sqt;t+" + h

�
SqT;Tn

�i
Finally (24) can be rewritten as:

� (�t;T ) = e� �SqT;Tn�
with:

e� (s) , E
eQq

t

24 s� ScTn + 1

FT;Tn (s)

LT � u�

1� LT
1�R

!+������SqT;Tn = s

35
= E

eQq

t

h
� (LT ; s)

+
���SqT;Tn = s

i
14



From there we only need LT : given S
q
T;Tn

= s; we know the common intensity
�t;T ; and then the common default probability q: At this stage we use the
conditional independence assumption to build the distribution of LT by a plain
recursion.
Unfortunately, the assumptions introduced so far will bias the index expected

loss. Therefore we rescale the common default intensity �t;T with a constant fac-
tor to guarantee that the market-implied (discounted) expected loss is matched
by the model. Within the model, this discounted expected loss reads:

Ft;T;Tn :E
eQq

t

26664 1

FT;Tn

�
SqT;TN

� E
eQq

t

�
LT
NT

����SqT;TN�| {z }
depends on scaling factor

37775
Implying the scaling factor, which generally lays in the interval [80%; 120%], is
actually not so expensive - computing an expected loss in the model can be done
in a fraction of a second. Note that other methods can be used to compute the
loss distribution, see [11].

5 Conclusion

We detailed two robust pricing frameworks for index spread derivatives. CDS-
like spreads are obtained by bootstrapping, but can be handled by a straight-
forward translation of the single name approach. On the other hand, quoted
spreads are observable on the market, but the practical implementation requires
approximations.
Neither framework is su¢ cient to cope with the Credit Index Option, given

its payo¤ incorporates the realized index losses up to exercise date, on top of the
underlying spread. We proposed two solutions. The adjusted-spread approach
is an ad hoc extension of our frameworks, whereas the HPCI models the joint
behavior of the spread and the realised loss, and as such is more general.
All the methodologies introduced in this paper must be combined with a

choice of dynamics for the spread chosen (quoted, CDS-like, or adjusted). The
driver for such a choice is the �t to the options premiums observed on the mar-
ket. Here we have only mentioned the lognormal distribution, but local spread
volatilities, CEV dynamics, or Black-Karasinski are de�nitely worth exploring.
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A Bootstrapping of a CDS-like curve from a
Quoted curve

This section describes the conversion of a standard (quoted) spread curve into
a CDS-like spread curve. We start by rewriting the MtM at t of a credit index
contract where we buy protection up to some maturity Tn at some contractual
spread ScTn :

Ut;Tn = E
Q
t

"Z Tn

t

ZCt;sdLs

#
� ScTn

X
t<Ti�Tn

ZCt;TiE
Q
t

"Z Ti

Ti�1

Nsds

#

Here EQt denotes the risk-neutral expectation with the information available at
t: Assuming homogeneous losses with a common recovery rate R; we get:

Ut;Tn = � (1�R)
Z Tn

t

ZCt;uE
Q
t [dNu]� ScTn

X
ZCt;Ti

Z Ti

Ti�1

EQt [Nu] du (25)

We further assume a deterministic exponential decay rate �t (�) for (the expec-
tation of) the index nominal:

EQt [Nu] = e�
R u
t
�t(v)dvNt (26)

This algorithm requires an assumption on �t (�) ; e.g. a stepwise function:

�t (u) =
X
k

�k1fTik�u<Tikg

where the dates Tik usually corresponds to the index maturities where a spread
is quoted. We then plug (26) in equation (25), and build the function �t (�) by
bootstrapping, i.e. we apply (25) for the successive quoted maturities.

Remark 5 This is similar to the bootstrapping of a deterministic CDS default
intensity from CDS quotations made of an upfront amount along with a �xed
running spread11 : the left-hand side of (25) corresponds to the upfront, as com-
puted from the quoted spread using equation (2), while the right-hand side in-
volves the contractual running spread ScTn :

Once �t (�) is calibrated, we can compute:

RBPt;Tn =

0@ X
t<Ti�Tn

ZCt;Ti

Z Ti

Ti�1

e�
R u
t
�(v)dvdu

1ANt

and from there the CDS-like spread can be computed via the conversion formula
(8)

Example 6 As of May 1, 2008, the mid 5Y XO spread is 423 bps in quoted
version, to be compared with 426 bps in running version. A complete set of
results and comments is given in appendix B.
11Usually 500 bps for single-names CDSs that trade upfront.
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B Numerical comparison between Quoted and
CDS-like spreads

B.1 Spot spreads

We use market data as of May 1st, 2008, and focus on the Series 9 of the iTraxx
XO (Crossover) and iTraxx IG (Investment Grade, a.k.a. iTraxx Main). Given
the XO curve is not so steep on that date, we also include a �cticious -though
realistic- curve, dubbed iTraxx XO "Steep". So as to compute CDS-like spreads,
note that we have assumed a linear interpolation between the quoted spreads,
and a �at extrapolation. Finally, all spreads are expressed in bps.

� IG: As expected, there is no di¤erence for the �rst maturity; this re-
sults from our �at extrapolation of quoted spreads when building CDS-like
spreads. The other di¤erences are small, yet visible: the steepness of the
quoted spread curve is somewhat mitigated by the relatively low spread
levels.

Spreads n Tn 20-Jun-11 20-Jun-13 20-Jun-15 20-Jun-18
ScTn 140 165 170 175
Sqt;Tn 48 68 73 78
St;Tn 48 69 74 79
Di¤erence 0 1 1 1

RBPs n Tn 20-Jun-11 20-Jun-13 20-Jun-15 20-Jun-18
Ft;Tn(S

q
t;Tn

) 2.91 4.51 5.94 7.77
RBPt;Tn 2.91 4.54 5.97 7.82
Relative di¤. 0% 1% 1% 1%

� XO: The results below are crucial given that the 5Y XO is the usual under-
lying for credit index options. Nevertheless, as announced, the relatively
�at XO curve does not allow to clearly di¤erentiate the spreads:

Spreads n Tn 20-Jun-11 20-Jun-13 20-Jun-15 20-Jun-18
ScTn 625 650 645 640
Sqt;Tn 362 423 436 436
St;Tn 362 426 439 437
Di¤erence 0 3 3 1

RBPs n Tn 20-Jun-11 20-Jun-13 20-Jun-15 20-Jun-18
Ft;Tn(S

q
t;Tn

) 2.69 3.91 4.89 5.99
RBPt;Tn 2.69 3.97 4.95 6.03
Relative di¤. 0% 1% 1% 1%

� XO "Steep": The 10Y�3Y spread is 186 bps for our Steep curve, to be
compared to 74 bps for the real curve. The di¤erences are substantial,
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which con�rms steepness as a key driver:

Spreads n Tn 20-Jun-11 20-Jun-13 20-Jun-15 20-Jun-18
ScTn 625 650 645 640
Sqt;Tn 300 425 458 486
St;Tn 300 432 464 491
Di¤erence 0 7 6 4

RBPs n Tn 20-Jun-11 20-Jun-13 20-Jun-15 20-Jun-18
Ft;Tn(S

q
t;Tn

) 2.73 3.91 4.83 5.79
RBPt;Tn 2.73 4.03 4.98 5.95
Relative di¤. 0% 3% 3% 3%

B.2 Forward spreads

We focus on the index contracts that underly the liquid credit index options.
As of t = 1 May 2008, these start at a date T which is either of 20 June 2008,
20 September 2008, and 20 December 2008; they all mature at 5Y, i.e. Tn = 20
June 2013. We include two additional start dates (20 June 2009 and 20 June
2010) to open the door to options with longer maturity.
Quoted and adjusted spreads and �at RBP are computed using the exact

formulae - resp. (31) and (23) - assuming a volatility of 50%.

� XO: We observe that quoted and CDS-like spreads are close, which is
line with what was observed in the previous section. The adjusted spread
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increases much faster than the others, due to its loss component.

Spreads n T 20-Jun-08 20-Sep-08 20-Dec-08 20-Jun-09 20-Jun-10
Sqt;T;Tn 425 430 435 447 485
St;T;Tn 428 433 438 450 487
S�t;T;Tn 439 471 504 582 806

RBPs n T 20-Jun-08 20-Sep-08 20-Dec-08 20-Jun-09 20-Jun-10
Ft;T;Tn 3.78 3.53 3.30 2.85 2.02
RBPt;T;Tn 3.83 3.58 3.35 2.89 2.04
F �t;T;Tn 3.79 3.56 3.35 2.93 2.12

� XO "Steep": As for the spot case, the steepness of the curve of quoted
spreads is a key driver, as evidenced below:

Spreads n T 20-Jun-08 20-Sep-08 20-Dec-08 20-Jun-09 20-Jun-10
Sqt;T;Tn 430 439 450 475 552
St;T;Tn 436 445 455 479 554
S�t;T;Tn 441 473 507 587 820

RBPs n T 20-Jun-08 20-Sep-08 20-Dec-08 20-Jun-09 20-Jun-10
Ft;T;Tn 3.78 3.54 3.30 2.86 2.03
RBPt;T;Tn 3.88 3.64 3.40 2.94 2.07
F �t;T;Tn 3.79 3.56 3.34 2.92 2.12

C Applying CDS-like models to payo¤s on the
quoted spread

C.1 Convexity arising from the model/product mismatch

The t�price of a general derivative on the quoted index spread, with payo¤ as
in (9), can be written as a risk-neutral expectation:

�'t = ZCt;TE
Q
t

h
'
�
SqT;Tn

�
NT

i
Unfortunately, rewriting it with the RBP probability brings no obvious simpli-
�cation for these derivatives:

�'t = RBPt;T;TnE
eQ
t

24'
�
SqT;Tn

�

T;Tn

35 (27)

where we need to introduce a normalized index RBP :


T;Tn ,
RBPT;Tn
NT
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We will also need auxiliary processes:


t;T;Tn ,
RBPt;T;Tn

ZCt;TE
Q
t [NT ]

ct;T;Tn ,

t;T;Tn

T;Tn

� 1

where the expectation EQt [NT ] is given by (26).
From the de�nitions above, it is easy to prove that 1=
t;T;Tn is a

eQ�martingale:
1


t;T;Tn
= E

eQ
t

�
1


T;Tn

�
(28)

so that:
E
eQ
t [ct;T;Tn ] = 0

which leads us to rewrite (27) as a sum of a simple expectation and a convexity
adjustment:

�'t = ZCt;TE
Q
t [NT ]

8>><>>:E
eQ
t

h
'
�
SqT;Tn

�i
+E

eQ
t

h
'
�
SqT;Tn

�
ct;T;Tn

i
| {z }

convexity adjustment

9>>=>>; (29)

This highlights two shortcomings when we use a framework on the CDS-like
spread for derivatives on the quoted spread:

� The convexity adjustment ct;T;Tn depends on the whole term-structure of
the spread (via 
T;Tn ; which itself involves RBPT;Tn); therefore we will
attempt to write it as a function of the spread.

� Similarly, the quoted spread should also be expressed as a function of the
CDS-like spread.

Both of these issues will be addressed below, at the cost of a few approxi-
mations.

C.2 Approximations of the convexity adjustment

Following [9], we approximate 
T;Tn(and hence ct;T;Tn) by a simple function
g (ST;Tn) of the CDS-like spread. To make sure that the approximation properly
degenerates in the case of deterministic spreads, we rescale the above and write
instead:


T;Tn � ĝ (ST;Tn) , g (ST;Tn)

t;T;Tn

g (St;T;Tn)

The convexity adjustment becomes:

ct;T;Tn =
g (St;T;Tn)

g (ST;Tn)
� 1
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As expected, the adjustment becomes 0 when spreads are deterministic.
Di¤erent suggestions for the function g appear in the interest-rate litterature,

see [9]. For our case, we believe that the Flat RBP introduced in §2.2 is a good
proxy of the normalized index RBP, and �nally we work with:

g (ST;Tn) , FT;Tn (ST;Tn)

C.3 Quoted spread as a function of the CDS-like spread

A �rst approach assumes that the ratio of the spreads is the ratio of their forward
values:

SqT;Tn , ST;Tn
Sqt;T;Tn
St;T;Tn

where the forward quoted spread Sqt;T;Tn is de�ned in §3.2. This solution is
simple, but is less appropriate for wide/steep index spread curves.
Our second approach is more re�ned, but computationally intensive. From

the conversion formula (8) between the two spreads, we get:

SqT;Tn = u�1T;Tn
��
ST;Tn � ScTn

�

T;Tn

�
and where u�1 is the inverse function of u; that is u � u�1 =Identity. Using the
approximation introduced above for 
T;Tn ; we �nally set:

SqT;Tn , u�1T;Tn
��
ST;Tn � ScTn

�
ĝ (ST;Tn)

�
D Practical approximations in models on the

quoted spread

D.1 Full-quoted framework

This simple framework uses only quoted spreads, and therefore avoids boot-
strapping:

� the forward �at RBP is approximated as the di¤erence of two spot �at
RBPs, both computed at the (unknown) forward level:

Ft;T;Tn � Ft;Tn

�
Sqt;T;Tn

�
� Ft;T

�
Sqt;T;Tn

�
� given the horizon T is short (typically a few months), the numerical results
in B provide an empirical justi�cation of the following approximations:

RBPt;T � Ft;T

�
Sqt;T

�
Nt

St;T � Sqt;T

This allows to rewrite (19) in terms of quoted spreads only:�
Sqt;T;Tn � S

c
Tn

�
Ft;T;Tn =

�
Sqt;Tn � S

c
Tn

�
Ft;Tn

�
Sqt;Tn

�
�
�
Sqt;T � S

c
Tn

�
Ft;T

�
Sqt;T

�
From there the quoted spread is easily implied.
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D.2 Mixed framework

In the full-quoted framework above, the forward �at RBP is computed as the PV
of 1bp cash-�ows paid between T and Tn, with a �at risk given by our unknown
forward quoted spread. Unfortunately this �atness assumption will bias the
term NT in de�nition 15... The mixed framework aims to better capture the
short-term risk through the following rescaling:

Ft;T;Tn � �t;T :
�
Ft;Tn

�
Sqt;T;Tn

�
� Ft;T

�
Sqt;T;Tn

��
with:

�t;T ,
EQt [NT ]eEQt [NT ] = e�

R T
t
�t(u)du

e�
R T
t
e�t(u)du

where eEQt and e�t are the versions of EQt and �t corresponding to the case where
the index spread curve is �at12 at Sqt;T;Tn : The short-term risk is now correct;
when T = Tm for some m; this is evidenced by the following

Ft;Tm;Tn =
nX

i=m+1

(Ti � Ti�1)ZCt;Tie
�
�R Tm

t
�t(u)du+

R Ti
Tm

�̂t(u)du
�

This requires the bootstrapping of the notional decay rate �t described in A -
up to time T only, so the computational cost should remain reasonable. As for
the spread, it is computed directly via (19) as for the exact case.

D.3 Summary

We end up with three possible set of de�nitions for the forward quoted spread
and forward �at RBP:

� the full-quoted framework uses only quoted spreads:8<:
�
Sqt;T;Tn � S

c
Tn

�
Ft;T;Tn =

�
Sqt;Tn � S

c
Tn

�
Ft;Tn

�
Sqt;Tn

�
�
�
Sqt;T � ScTn

�
Ft;T

�
Sqt;T

�
Ft;T;Tn = Ft;Tn

�
Sqt;T;Tn

�
� Ft;T

�
Sqt;T;Tn

�
� the mixed framework is more accurate but requires a bootstrapping:8<:

�
Sqt;T;Tn � S

c
Tn

�
Ft;T;TnNt =

�
Sqt;Tn � S

c
Tn

�
Ft;Tn

�
Sqt;Tn

�
Nt �

�
St;T � ScTn

�
RBPt;T

Ft;T;Tn =
�
Ft;Tn

�
Sqt;T;Tn

�
� Ft;T

�
Sqt;T;Tn

��
�t;T

�
Sqt;T;Tn

�
(30)

12We have already mentioned that �̂t (u) �
S
q
t;T;Tn
1�R :
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� the exact framework relies on both bootstrapping and numerical integra-
tion:8<:
�
Sqt;T;Tn � S

c
Tn

�
Ft;T;TnNt =

�
Sqt;Tn � S

c
Tn

�
Ft;Tn

�
Sqt;Tn

�
Nt �

�
St;T � ScTn

�
RBPt;T

Ft;T;Tn =
ZCt;TE

Q
t [NT ]

NtE
eQq
t [1=FT;Tn(S

q
T;Tn

)]
(31)

Remark 7 For deterministic rates and spreads, the mixed and exact frame-
works match. Indeed, the only randomness left in this case is the loss, impacting
only Nt, and exactly re�ected by �t;T :

D.4 Numerical results

The approximations introduced in this appendix are fast and remain relatively
accurate, but they both miss the convexity of the quoted spread: its forward
should depend on its volatility. Here we provide numerical insight, in the case
of a log-normal di¤usion with 50% or 100% volatility for the forward quoted
Crossover spread. As in appendix B, we take a market date t = 1 May 2008,
and we focus on the 5y maturity: Tn = 20 June 2013. The results below show
that the mixed approximation is an accurate proxy: the error always remains
under 3bp for the spread (and 0.3 for the RBP). This is consistently better than
the full quoted framework.

Sqt;T;Tn n T 20-Jun-08 20-Sep-08 20-Dec-08 20-Jun-09 20-Jun-10
full quoted 425 429 434 444 478
mixed 425 430 435 448 485
exact (� = 50%) 425 430 435 447 485
exact (� = 100%) 425 429 434 446 482

Ft;T;Tn n T 20-Jun-08 20-Sep-08 20-Dec-08 20-Jun-09 20-Jun-10
full quoted 3.77 3.52 3.28 2.81 1.94
mixed 3.78 3.54 3.30 2.85 2.02
exact (� = 50%) 3.78 3.53 3.30 2.85 2.02
exact (� = 100%) 3.77 3.52 3.28 2.83 1.99
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